

©Eggplant CLIENT CONFIDENTIAL Page i

Eggplant Monitoring Insights

Script Editing User and Reference Guide

September 2021

©Eggplant CLIENT CONFIDENTIAL Page ii

Document Control

Proprietary Information

The content of this document is considered proprietary information.

Eggplant gives permission to copy this review for the purposes of disseminating information
within its clients or any regulatory agency.

Document Version Control

Data Classification Client Confidential

Client Name All Eggplant Monitoring Insights Clients

Report Reference Final

Document Title Script Editing

Author Philip Vandenberg

QA and Approval Paul Bianciardi

Document History

Issue No. Issue Date Issued By Change
Description

0.1 15 May 2019 Philip Vandenberg 1st Draft

0.2 20 May 2019 Philip Vandenberg Technical Review

1.0 22 May 2019 Philip Vandenberg 1st Release

1.1 14 June 2019 Paul Bianciardi Additional methods

Formatting updates

1.2 27 June 2019 Paul Bianciardi Updated copy

1.3 17 July 2019 Paul Bianciardi Additional methods

1.4 23 July 2019 Paul Bianciardi Updated images

1.5 19 February 2020 Priya Sundararajan Additional methods

1.6 09 September 2021 Mayooraj
Murugathasan

Script editing
improvements

1.7 23 September 2021 Mayooraj
Murugathasan

Updated images
and incorporated
review feedback

©Eggplant CLIENT CONFIDENTIAL Page i

Contents

CONTENTS .. I

 SCOPE .. 1

1.1 DOCUMENT SCOPE ... 1

1.2 DOCUMENT STRUCTURE ... 1

 SCRIPT EDITING USER GUIDE ... 2

2.1 ACCESSING THE ADMINISTRATION PORTAL ... 2

2.2 USER JOURNEY SETTINGS .. 2

2.3 ACCESSING THE SCRIPT EDITOR .. 3

2.4 VIEWING THE VERSION HISTORY ... 4

2.5 COMPARING VERSIONS ... 4

2.6 ROLLBACK OF CODE ... 6

 SCRIPT EDITING REFERENCE GUIDE ... 7

3.1 SCRIPT BEHAVIOUR FUNCTIONS ... 7

3.2 CURRENT STATE OF THE RUN .. 12

3.3 HELPER FUNCTIONS ... 14

3.3.1 SELENIUM HELPERS ... 14

3.3.2 CONVENIENCE HELPERS .. 17

 ADVANCED SCRIPTING ... 18

4.1 INITIALISE AND FINALISE BLOCKS .. 18

4.2 SCOPE ... 20

©Eggplant CLIENT CONFIDENTIAL Page 1

 Scope

1.1 Document Scope

This document provides basic user and reference information to support the script
editing feature of Eggplant Monitoring Insights as released in Agent 10.

The objective is to provide a background of how the feature can be accessed and
used, outline best practices and document the available additional programming
functions provided by Eggplant through the scripting interface.

This document does not provide guidance on programming or scripting language,
methods and practices except where it is appropriate to do so.

1.2 Document Structure

The document is divided into several sections, describing how to modify scripts and a
reference guide for the different functions available to you.

©Eggplant CLIENT CONFIDENTIAL Page 2

 Script Editing User Guide

This section provides an overview of script editing mode.

2.1 Accessing the Administration Portal

Access to the script editing functions is gained through the Administration Portal of
Monitoring Insights. Figure 1 shows how to access the Administration Portal for a user
journey.

Click on the monitor from the main Monitoring Insights portal (where you see all your
monitors listed). This will show a menu of options for that monitor. Select the Monitor
Configuration option:

Figure 1: Gaining access to the Administration Portal.

2.2 User Journey Settings

Clicking Monitor Configuration will open the Administration Portal in the View/Edit
User Journey Settings as shown in Figure 2.

Many administration functions can be performed in this portal to define how the
monitor will work and the tests it needs to perform.

Each of the steps of the user journey are listed and access control provides either
viewing and/or editing capabilities, depending on your role.

Authorisation must have been granted to enable access to the script editing functions.

If you are authorised to do this, the Edit Script Code option will be available in the top
panel of the View/Edit User Journey Settings, as shown in Figure 2.

To access the script editor, click the highlighted icon:

©Eggplant CLIENT CONFIDENTIAL Page 3

 Figure 2: User Journey settings in the administration portal

2.3 Accessing the Script Editor

Figure 3 shows the interface for the script editor for the example script. The script is
presented in blocks of code for each step of the journey. There is also a specialist
block at the beginning and at the end for advance scripting - see section 4 'Advanced
Scripting' below.

Each block can be edited separately but the script is saved and updated as a complete
entity using the Save option at the bottom of all the script blocks.

Figure 3: Script code editor

©Eggplant CLIENT CONFIDENTIAL Page 4

2.4 Viewing the version history

The version history of the code can be viewed as shown in Figure 4.

Figure 4: Version history of the code

2.5 Comparing versions

A previous version can be compared with the current version by selecting the relevant
previous version from the dropdown and clicking on the Compare button, as shown in
Figure 5.

Figure 5: Compare versions

The code differences between the two versions will then be displayed side-by-side as
shown in Figure 6.

©Eggplant CLIENT CONFIDENTIAL Page 5

Figure 6: View the code differences

The historic version can be loaded into the script editor by clicking on the 'Load version'
button as shown in Figure 7.

Figure 7: Load historic version

The historic version will then be displayed.

Figure 8: View historic version

©Eggplant CLIENT CONFIDENTIAL Page 6

2.6 Rollback of code

If desired, the historic version can be saved as the latest version (i.e. rollback) by
clicking the 'Save' button, as shown in Figure 9. Changes can also be made to the
historic version before saving it as the latest version.

Figure 9: Save historic version

After saving the script a confirmation message will be displayed. The new latest
version number of the script will also be shown along with the updated date/time and
the name of the user who performed the update. See figure 10.

Figure 10: Display confirmation message

©Eggplant CLIENT CONFIDENTIAL Page 7

 Script Editing Reference Guide

Scripts are written in Ruby, with the associated Selenium binding. The following sections document various functions that can be
used within the Monitoring Insights scripts.

Care should be taken, as changes will be activated in your monitor as soon as you save them.

It is recommended that when applying changes, you first comment out any existing lines (with a #) and then add a new line with the

modification, to make it easier to undo the change if necessary. Additionally, it is recommended you add a comment to each change.

If in any doubt, please contact Eggplant Customer Support first before making any changes.

3.1 Script Behaviour Functions

This section describes various methods available and inbuilt within Agent 10 that can be used within any of the steps of a user journey
script. Some methods are more advanced and should only be changed with caution.

The methods in this section are used to control the behaviour of the user journey and exist in the EggPlant::Script:: namespace.

Method/Attribute with Example Return Description

EggPlant::Script::getCustomString()

e.g:

EggPlant::Script::getCustomString()

string Gets the custom string for the currently executing script

EggPlant::Script::getCustomString(ScriptID, shard)

e.g:

EggPlant::Script::getCustomString(123, 4)

string Do not modify this function without reference to Eggplant
Customer Support first.

This allows you to get the custom string from different scripts.

EggPlant::Script::getCustomNumber()

e.g:

int Gets the custom number for the currently executing script

©Eggplant CLIENT CONFIDENTIAL Page 8

Method/Attribute with Example Return Description

EggPlant::Script::getCustomNumber()

EggPlant::Script::getCustomNumber(ScriptID, shard)

e.g:

EggPlant::Script::getCustomNumber(123, 4)

int Do not modify this function without reference to Eggplant
Customer Support first.

This allows you to get the custom number from different
scripts.

EggPlant::Script::setCustomString(String)

e.g.:

EggPlant::Script::setCustomString('hello world')

n/a Sets the custom string for the currently executing script.

EggPlant::Script::setCustomString(String, ScriptID, shard)

e.g:

EggPlant::Script::setCustomString('hello world', 123, 4)

n/a Do not modify this function without reference to Eggplant
Customer Support first.

This allows you to set the custom string for different scripts.

EggPlant::Script::setCustomNumber(int)

e.g:

EggPlant::Script::setCustomNumber(123456)

n/a Sets the custom number for the currently executing script.

EggPlant::Script::setCustomNumber(int, ScriptID, shard)

e.g:

EggPlant::Script::setCustomNumber(123456, 123, 4)

n/a Do not modify this function without reference to Eggplant
Customer Support first.

This allows you to set the custom number for different scripts

©Eggplant CLIENT CONFIDENTIAL Page 9

Method/Attribute with Example Return Description

EggPlant::Script::setResultCode(resultCode)

e.g:

EggPlant::Script::setResultCode(23)

n/a Do not modify this function without reference to Eggplant
Customer Support first.

This will force a specified result code for the step.

This function requires an integer parameter, and will return a
script error (RC=103) if no parameter is passed, or if the
passed parameter is not an integer.

Notes:
• This will FORCE the result code for the step (irrespective

of the success/failure of other checks), so use with caution.
• Is useful run time checks (such as no stock available) on

an otherwise dummy step.

EggPlant::Script::setRequiredText(String)

e.g:

EggPlant::Script::setRequiredText("Condition not met")

n/a Sets the expected phrase to the given string for the current
step.

The phrase is set in the running script and all future runs (as
soon as the method is called).

EggPlant::Script::setRequiredText(String, step)

e.g:

EggPlant::Script::setRequiredText("Condition not met", 2)

n/a Sets the expected phrase to the given string for the specified
step.

The step number is indexed from 1 and refers to all steps
irrespective of whether or not the step is enabled.

EggPlant::Script::getFormVariable(String)

e.g:

EggPlant::Script::getFormVariable("foo")

string Gets the value of the form variable for the given variable name
from the current step

If the name does not exist, then an empty string is returned.

©Eggplant CLIENT CONFIDENTIAL Page 10

Method/Attribute with Example Return Description

EggPlant::Script::getFormVariable(String, step)

e.g:

EggPlant::Script::getFormVariable("foo", 2)

string Gets the value of the form variable for the given variable name
from the specified step.

The step number is indexed from 1 and refers to steps
irrespective of whether or not the step is enabled.

EggPlant::Script::addExtraInfo()

e.g:

EggPlant::Script::addExtraInfo("Selected item 4")

string Creates/appends the given string to ExtraInfo for the given run.

Multiple calls will continually append to ExtraInfo.

EggPlant::Script::getUploadFile()

e.g:

EggPlant::Script::getUploadFile()

string Gets the path location for the file to be uploaded for the
corresponding step being run in.

There needs to be a file uploaded against the step.

EggPlant::Script::getCustomHeaders()

e.g:

EggPlant::Script::getCustomHeaders()

array Lists all custom headers currently applied to all requests for
this step. It does not include permanent custom headers, use
getPermamentCustomHeaders as well if you also need to list

headers that persistent over multiple steps.

EggPlant::Script::addCustomHeader(headerName, headerValue)

e.g:

EggPlant::Script::addCustomHeader("x-header", "abc")

n/a Adds a custom header for all requests, for this step only. Use
addPermanentCustomHeaders to persist over multiple steps.

Multiple calls can be used to add multiple custom headers.

NOTE that these headers will automatically be removed after
each step.

©Eggplant CLIENT CONFIDENTIAL Page 11

Method/Attribute with Example Return Description

EggPlant::Script::removeCustomHeader("x-header")

e.g:

EggPlant::Script::removeCustomHeader(name)

n/a Removes the custom header for all requests, for this step only.
Use removePermanentCustomHeaders to remove permanent

custom headers that persist over multiple steps.

NOTE that only custom headers that have been added method
can be removed (not standard headers added by the browser).

EggPlant::Script::getPermanentCustomHeaders()

e.g:

EggPlant::Script::getPermanentCustomHeaders()

array Lists all permanent custom headers currently applied to all
requests at that point in time. It does not include custom
headers for the current step only, use getCustomHeaders as

well if you also need those.

EggPlant::Script::addPermanentCustomHeader(name, value)

e.g:

EggPlant::Script::addPermanentCustomHeader("x-header", "abc")

n/a Adds a custom header for all requests, for all steps from that
point onwards. Multiple calls can be used to add multiple
custom headers.

EggPlant::Script::removePermanentCustomHeader(name)

e.g:

EggPlant::Script::removePermanentCustomHeader("x-header")

n/a Removes the custom header for all requests, for all steps from
that point onwards.

NOTE that only custom headers that have been added method
can be removed (not standard headers added by the browser).

©Eggplant CLIENT CONFIDENTIAL Page 12

3.2 Current State of the Run

This section describes various methods available for determining the current state of the monitor run. These all exist in the
EggPlant::Run:: namespace.

Use or change these with caution, please contact Eggplant Customer Support if in any doubt.

Method/Attribute with Example Return Description

EggPlant::Run::finalStepNumber

e.g:

if EggPlant::Run::finalStepNumber == 5…

int Returns the final step number for the user journey run, at the
point at which it is called.

Steps are always indexed from 1 and include any disabled
steps.

If used on a step, finalStepNumber will always return the

number of that step (e.g., 4), however it is rarely used like this.

finalStepNumber will generally be used in the finalise

block (see the following section for more details on finalise).

When called in the finalise block, finalStepNumber will

return the step number that the user journey got to when
completed. This is particularly useful to determine what step
number the user journey got to, as it could fail at any step.

For example:

• If a 5 step journey runs to completion, finalStepNumber

called in the finalise block, will return 5.

• If a 5 step journey fails at step 3, finalStepNumber

called in the finalise block, will return 3.

EggPlant::Run:: overallResultCode

e.g:

int Returns the latest result code for the user journey run, at the
point at which it is called in the script.

©Eggplant CLIENT CONFIDENTIAL Page 13

Method/Attribute with Example Return Description

if EggPlant::Run::overallResultCode == 23 &&

 EggPlant::Run::finalStepNumber == 5…
This will always be the result code, up to the last completed
step. For example, if called in Step 2, overallResultCode

will be the result code of Step 1.

Note that the overallResultCode will always reflect the

‘worst’ result code up to that point, which may be from several
steps prior.

Calls to overallResultCode are generally made in the

finalise block (see the following section for more details on
finalise).

EggPlant::Run::severity

e.g:

if ["PROBLEM", "ERROR"].include? EggPlant::Run::severity…

string Returns the severity of the running user journey corresponding
to the EggPlant::Run::overallResultCode, as one of

the strings: "NULL", "OK", "WARNING", "PROBLEM" or

"DOWN".

EggPlant::Run::testType

e.g:

if EggPlant::Run::testType == "RETEST"…

string Returns the test type of the running user journey as one of the
strings: "SCHEDULED", "RETEST" or "MANUAL".

EggPlant::Run::getRawContent() string Returns a single string that is a concatenation of all HTTP
bodies for textual responses (e.g., HTML, CSS and AJAX
responses), for the current step.

©Eggplant CLIENT CONFIDENTIAL Page 14

3.3 Helper Functions

There are two types of helper functions available within the scripts. Those for simplifying Selenium interactions, and those that provide
more generic convenience helpers.

3.3.1 Selenium Helpers

These provide convenience helpers for interacting with websites, implemented using Selenium. These are all extensions to the
Selenium::WebDriver::Driver interface, so are referenced from the driver object.

Method/Attribute Return Description

driver.find_text(text, tag = "*") element

or nil

Returns a visible element containing the text string based on

the type of tag given (e.g. you can just search within "div"

elements if you know that text is of that type).

If there is no match, or the only match is not visible, then nil

will be returned. This ensures you can interact with the returned
element.

If there are multiple visible matches, then the first will be
returned.

driver.find_texts(text, tag = "*") [element]

or

[]

The same as find_text but will return all matching, visible

elements, not just the first.

If there is no match, or the only match is not visible, then an
empty array will be returned.

©Eggplant CLIENT CONFIDENTIAL Page 15

driver.scroll_to(selector, distance = 100, type = :css) n/a Scrolls to the element matching the given selector and then an
additional distance of pixels to ensure that the selector is fully

visible. The type of selector can be specified, or the default css

will be used.

By default, this will scroll an additional 100 pixels, but this can
be changed by defining the distance parameter.

If the selector does not exist, then an exception of type
Selenium::WebDriver::Error::NoSuchElementError

will be raised (ideally, use selector_exists before scrolling).

driver.selector_exists(selector, type = :css) boolean Returns whether the given selector of the given type, exists.

If the selector exists and is visible, this will return true.

If the selector exists but it not visible, or does not exist at all,

this will return false.

driver.selectors_exist(selector, type = :css) [element]

or

[]

The same as selector_exists but will return all matching,

visible elements, not just the first.

If there is no match, or the only match is not visible, then an
empty array will be returned.

driver.text_exists(text, tag = "*") boolean Returns whether the given text based on the type of tag

given, exists and is visible.

If the text exists and is visible, this will return true.

If the text exists but it not visible, or does not exist at all, this

will return false.

©Eggplant CLIENT CONFIDENTIAL Page 16

driver.wait_for_selector(selector, timeout = 30, type =

:css)
boolean This will wait for up to timeout seconds for the selector of

the given type to exist and be visible.

If the selector is found within the timeout, this will return

true, otherwise false will be returned.

driver.wait_for_text(text, tag = "*", timeout = 30) boolean This will wait for up to timeout seconds for the text based on

the type of tag given, to exist and be visible.

If the text is found and is visible within the timeout, this will

return true, otherwise false will be returned.

driver.wait_while_selector(selector, timeout = 30,

 type =

:css)

boolean This will wait for up to timeout seconds for the selector of

the given type to no longer exist on the page.

If the selector no longer exists within the timeout, this will

return true, otherwise false will be returned.

This is useful for example when additional content is loading
behind a spinner and you want to wait until the spinner has
gone.

driver.wait_while_visible(selector, timeout = 30, type =

:css)
boolean This will wait for up to timeout seconds for the selector of

the given type to no longer be visible (but still exists on the

page).

If the selector is no longer visible within the timeout, this

will return true, otherwise false will be returned.

This is useful for example when additional content is loading
behind a spinner and you want to wait until the spinner has
gone.

©Eggplant CLIENT CONFIDENTIAL Page 17

3.3.2 Convenience Helpers

These are generic Ruby helpers for some commonly used functions. These all exist in the EggPlant::Helper:: namespace.

Method/Attribute with Example Retur
n

Description

EggPlant::Helper::generateDate(numDays, format)

e.g:

EggPlant::Helper::generateDate(7, "Next week is %d/%m/%Y")

EggPlant::Helper::generateDate(-7, "Last week was:

%d/%m/%Y")

string Returns a date relative to now, numDays in the future (if

positive), or numDays in the past (if negative).

The format is how you want the date returned, as defined in

the strftime Ruby function.

EggPlant::Helper::getContentBetween(src, from, start, end,

 look_forward=true)

e.g:

EggPlant::Helper::getContentBetween('abcdef', '', 'b', 'e')

 # will return 'cd'

EggPlant::Helper::getContentBetween('abcdef', '', 'w', 'e')

 # will return 'NOTFOUND'

EggPlant::Helper::getContentBetween('z1a3y1b3', '', '1',

'3')

 # will return 'a'

EggPlant::Helper::getContentBetween('1a3z1b3z', 'z', '1',

'3')

 # will return 'b'

EggPlant::Script::getContentBetween('1a3z1b3z', 'z', '1',

'3',

 false)

 # will return 'a'

string Returns a substring between the start and end points from

the given src string, starting from the from string (i.e. from

acts as an anchor to find first).

If there is no match or the from string is not found, then the

string 'NOTFOUND' will be returned.

By default, this will search for the from string and then search

to the right (forward) for the start string. Set look_forward

to false to search backwards from the from string for the

start string).

If you do not want an anchor for the from string, then set this to

an empty string ('').

©Eggplant CLIENT CONFIDENTIAL Page 18

 Advanced Scripting

This section provides some detail about more advanced scripting, that may or may not
apply to your scripts.

Apply these scripts with caution. Contact Eggplant Customer Support if you
have any questions.

4.1 Initialise and Finalise Blocks

It is sometimes necessary to run some script code before the initial URL is loaded. A
common use case for example is to set permanent custom HTTP headers, which need
to be set for all steps, including step 1.

To achieve this, use the initialise code block as shown in Figure 11.

Similarly, it is sometimes necessary to run some code when the user journey run has
finished. This code always executes at the end of the run, irrespective of the success
or failure of the user journey, or which step it finished at. A common use case is to
update or reset a custom string or number, ready for the next run.

To achieve this, use the finalise code block as shown in Figure 11.

Note that the finalise code block is effectively executed after the run has finished. As
such, you can only perform certain operations in this block. You cannot for instance,
change the result code of the run as it has already finished.

You will often use the methods defined in the “Current State of the Run” section above
in the finalise block to determine which step or condition the user journey finished at.
For example, you may only want to update the custom string if the user journey
finished with a specific failure.

The initialise and finalise code blocks will only be available if they have already been
set up in the script. Contact Eggplant Customer Support for more details.

©Eggplant CLIENT CONFIDENTIAL Page 19

Figure 11: Script code editor with initialise and finalise code block

Script code in the initialise block will run before the initial URL is loaded. Any code in
the finalise block will execute after the run has finished:

©Eggplant CLIENT CONFIDENTIAL Page 20

4.2 Scope

The code is scoped in such a way that it will be available in subsequent step code
blocks.

Figure 12: Declaring functions for use in later steps

This is often used to declare functions in the initialise block, or in step 1, and then call
those functions in subsequent steps.

If you need to declare a variable for use between steps, then ensure that it is defined
with the @ scope, or it will not work and you will get a result code 103, script error.

Figure 13: Variable scope

	Contents
	1 Scope
	1.1 Document Scope
	1.2 Document Structure

	2 Script Editing User Guide
	2.1 Accessing the Administration Portal
	2.2 User Journey Settings
	2.3 Accessing the Script Editor
	2.4 Viewing the version history
	2.5 Comparing versions
	2.6 Rollback of code

	3 Script Editing Reference Guide
	3.1 Script Behaviour Functions
	3.2 Current State of the Run
	3.3 Helper Functions
	3.3.1 Selenium Helpers
	3.3.2 Convenience Helpers

	4 Advanced Scripting
	4.1 Initialise and Finalise Blocks
	4.2 Scope

